REACTION OF α , β -UNSATURATED SUGAR LACTONES WITH FORMALDOXIME

I. PANFIL^a, C. BEZZECKI^a, M. CHMIELEWSKI^{a*}, AND K. SUWIŃSKA^b

^aInstitute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, ^bInstitute of Phisycal Chemistry, Polish Academy of Sciences, 01-224 Warszawa, POLAND

(Received in UK 30 August 1988)

Abstract - Unsaturated sugar δ -lactones react with a mixture of hydroxylamine and formaldehyde (formaldoxime) either via stepwise process to produce the 1-aza-3,9-dioxa-8-oxo-bicyclo(4.3.0)nonan derivative, or via 1,3-dipolar cycloaddition of the nitrone form affording the 8-aza-3,7-dioxa-2-oxo-bicyclo-(4.3.0)nonan derivative.

In previous papers, we have reported that 1,3-dipolar cycloaddition of nitrones to α,β -unsaturated sugar lactones proceeded regiospecifically to afford a mixture of stereoisomers.^{1,2} The nitrone molecule approaches the lactone ring anti to the terminal acetoxymethyl group of the substrate, and *exo* addition is favoured over *endo* addition. Adducts having the isoxazolidine ring fused to the sugar unit have been used as precursors of enantiomerically pure trisubstituted azetidinones-2 (Scheme 1).³ The full sequence of reactions leading from the lactone to the β -lactam skeleton, which is based on a previously published approach.⁴ have been successfully performed for the nitrones derived from anisaldehyde and *N*-phenylhydroxylamine.^{2,3}

Scheme 1

The present work directs attention to the simplest nitrone which is the tautomeric form of formaldoxime. It is known that, under certain conditions, formaldoxime can react directly with olefins in a 1,3-dipolar fashion to produce isoxazolidines.^{5,6} As dipolarophiles we selected racemic 6-acetoxymethyl-5,6-dihydropyron-2 (<u>1</u>) and 4,6-di-O-acetyl-2,3-dideoxy-<u>D</u>-threohex-2-enoaldono-1,5-lactone (<u>2</u>).

RESULTS AND DISCUSSION

Formaldoxime was prepared *in situ* by the reaction of formaldehyde and hydroxylamine hydrochloride in the presence of sodium hydroxide in a methanol-water solution.⁵ Cycloadditions were performed according to two general procedures. The first one used a 5-fold excess of formaldoxime and the reaction mixture was storred at room temperature for 3 days. In the second, equimolar amounts of substrates were heated at 70° C for 3 h.

Using the first procedure, lactone $\underline{1}$ afforded stereospecifically the unexpected bicyclic adduct $\underline{7}$ in 80% yield (Scheme 2). The structure of $\underline{7}$ was proved unequivocally by X-ray crystallography (Fig. 1; see Experimental). It can be postulated that reaction proceeds *via* a two-step addition to $\underline{7}$ (Scheme 2). The first step consists in an axial approach of hydroxylamine to the double bond of $\underline{1}$ to afford a Michael adduct $\underline{3}$. Subsequently the hydroxyl group of the hydroxylamine residue opens the six-membered lactone ring to produce isoxazolidinone $\underline{5}$. This pathway corresponds well with that previously reported for the highly stereoselective and reversible addition of *O*-benzylhydroxylamine to lactone $\underline{1}$, in which the nucleophile is added *anti* with respect to the equatorial acetoxymethyl group. ⁷ Compound $\underline{5}$ adds a formaldehyde molecule producing a bicyclic system $\underline{7}$.

Scheme 2

Hydroxylamine does not add to the double bond of the lactone $\underline{1}$ when the reaction mixture is heated because the equilibrium of Michael addition is entirely shifted to substrates. On the other hand, 1,3-dipolar cycloaddition of the nitrone tautomeric form of formaldoxime to lactone $\underline{1}$, which is slow at room temperature, begins to play a decisive role. The cycloadduct $\underline{9}$, however, reacts immediately with a second molucule of lactone $\underline{1}$ to produce a double adduct $\underline{10}$.

234

The alternative pathway for the formation of <u>10</u> should also be taken into consideration. This consists in formation of a nitrone from hydroxylamine <u>3</u> and formaldehyde at the first step of reaction. Subsequently, the nitrone affords <u>10</u> via 1,3-dipolar cycloaddition to lactone <u>1</u> (Scheme 3).

The structure of <u>10</u>, which is a mixture of two diastereomeric racemates, was proved on the basis of analytical and spectral data. Owing to the slow inversion process at the isoxazolidine nitrogen atom, $\frac{3}{10}$ displays considerable line broadening in the ¹H-n.m.r. and ¹³C-n.m.r. spectra taken at room temperature; at 100°C in pyridine solution <u>10</u> shows well resolved ¹H-n.m.r. spectrum.

In contrast to <u>1</u>, lactone <u>2</u> at room temperature produces compound <u>8</u> in 20% yield only, probably due to the *syn* interaction between the acetoxy substituent and the neighbouring five-membered isoxazolidine ring. In addition to <u>8</u>, the 1,3-cycloadduct <u>11</u> (40%) and its rearranged derivative <u>12</u> (10%) are formed (Scheme 4). Two-step addition to lactone <u>2</u>, at first hydroxylamine and subsequently formaldehyde, increased the content of <u>8</u> up to 45%.

Upon heating $\underline{2}$ with formaldoxime, $\underline{11}$ becomes the only product (85%). In contrast to $\underline{9}$, $\underline{11}$ does not add the second molecule of $\underline{2}$. Upon prolongation of heating, $\underline{11}$ undergoes lactone ring contraction followed by addition of formaldehyde to afford the tricyclic structure $\underline{12}$.

The structures of <u>11</u> and <u>12</u> were determined on the basis of their m.s., ¹H-n.m.r., and ¹³C-n.m.r. data. In addition, the structure of crystalline <u>12</u> was proved by the X-ray crystallography, thus proving also the structure and configuration of the bicyclic precursor <u>11</u> (Fig. 2).

Scheme 5

The difference in reactivity between $\underline{1}$ and $\underline{2}$ is probably connected with the participation of the 4-acetoxy substituent which facilitates the retro Michael addition, causing shift if reversible reaction toward the 1:1 adduct $\underline{11}$ and its rearranged form $\underline{12}$ (Scheme 5).

Fig.1 Computer generated perspective drawing of (4S*, 6R*) 4-acetoxymethy1-1-aza-3,9-dioxa-8-oxobicyclo(4.3.0)nonan (7).

Fig. 2 Computer generated perspective drawing of (1R, 4R, 9R, 10S) 9-acetoxymethyl-6-aza-2,8,11trioxa-3-oxo(4.3.2.0)undecan (<u>12</u>).

EXPERIMENTAL

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C-n.m.r.}$ spectra were recorded for solutions in CDCl₃ on a Bruker AM-500 spectrometer (TMS=0 ppm). I.r. spectra were recorded on a Unicam SP-200 spectrophotometer. Mass spectra were recorded with a Finigan Mat 8200 mass spectrometer. Tic was performed with Merck DC Alufolien Kieselgel 60F-254. Column chromatography was carried out with silica gel Merck (230-400 mesh). Mps are uncorrected.

Lactones <u>1</u> and <u>2</u> were obtained according to the procedure described earlier.⁸

<u>Crystallography</u>. - Compound 7 (C_0H_1,NO_5) crystallized in monoclinic I2/a space group, a=15.257 (3), b=5.714(2), c=23.721(4) Å, β =94.44(2)⁵, and z=8. The structure was solved by direct method using MULTAN program system and refined to R=0.051 and Rw=0.045 by using 1186 independent reflections of Mo-Ka radiation.

Compound <u>12</u> (C₁H₁NO₂) crystallized in monoclinic P2₁ space group, a=5.558(2), b=8.119(4), c=11.948(4) A, $_{0,6}$ =98.19(3), and z=2. The structure was solved by direct methods using the MULTAN program system and refined to R=0.046 and Rw=0.049 by using 920 independent reflections of Mo-Ka radiation.

 $\frac{(1R^{*}, 4S^{*}, 6R^{*}) 4-Acctoxymethyl-8-((6'S^{*}, 3'R^{*}) 6'-acctoxymethyltetrahydro-2H-pyronyl-4')-3,7-dioxa-2-oxo-bicyclo(4.3.0)nonan (10). - To a solution of formaldoxime obtained according to the procedure described above, lactone <u>1</u> (2.6 g, 0.015 mol) was added at room temperature. The mixture was heated at 70°C for 2 h and after cooling extracted with methylene chloride. The extract was dried and evaporated to give an oily substance. Chromatographical purification gave crystalline product <u>10</u> (60%); m.p. 130-133°C; i.r. (CH₂Cl₂): 1750 cm⁻; H-n.m.r. (pyridine-d₅; 100°C): 1.85-2.15 (m, 4H, H-5, 5a, 5', 5'a), 1.95 (s, 6H, 20Acf), 2.76 (dd, 1H, J_{2'4'},=5.5, J_{2'3'}, =16.8 Hz, H-3'), 2.83 (dd, 1H, J_{3'}, =5.2 Hz, H-3'a), 3.08(m, 1H, H-1), 3.22 (quintet, 1H, £J=20.1 Hz, H-4'), 3.56 (t, 1H, £J=18.6 Hz, H-9a), 3.70 (q, 1H, £J=23.7 Hz, H-9b), 4.20-4.35 (m, 4H, 2CH₂OAc), 4.49 (quintet, 1H, £J=14.6 Hz, H-6), 4.89 (m, 2H, H-4,6'). MS m/z: M. 385, M-170, M-214. Anal. Calcd for C₁₇H₂₃NO₉: C, 52.98; H, 5.97; N, 3.63. Found: C, 52.8; H, 6.2; N, 3.5.$

(4S, 5R, 6S) 5-Acetoxy-4-acetoxymethyl-1-aza-3,9-dioxa-8-oxo-bicyclo[4,3,0]nonan (8), (1R, 4S, 5R, 6S) 5-acetoxy-4-acetoxymethyl-8-aza-3,7-dioxa-2-oxo-bicyclo[4,3,0]nonan (11), and (1R, 4R, 9R, 10S) 9-acetoxymethyl-6-aza-2,8,11-trioxa-3-oxotricyclo[4,3,2,0,*]undecan (12). - To a solution of formaldoxime obtained according to the procedure described for 7, lactone 2 (0.68 g, 0.003 mol) was added at room temperature. The mixture was left at room temperature for 3 days. Subsequently the mixture was extracted with methylene chloride. The extract was dried and evaporated. The oily residue was separated on a silica gel column using hexane-ethyl acetate 1:1 mixture as an eluant to give three products and unreacted lactone (20%): 8: 20%; m.p. 106-108°C; (a) +73.0° (c 1, CH,Cl_2); i.r. (CH,Cl_2): 1760, 1805 cm⁻¹; ¹H-n.m.r. (CDCl_3): 2.066, 2.15 (2s, 6H, 20Ac), 2.45 (d, 1H, J₂₇,=165 Hz, H-7), 3.08 (dd, 1H, J₂₇,=7.6 Hz, H-7), 3.96 (dt, 1H, J₄₅=1.3, J₄₆=6.7, J₄₉=6.1 Hz, H-4), 4.06 (dd, J₅₆=3.8 Hz, H-6), 4.69 (dd, 1H, J₄₈=11.5 Hz, H-A), 4.14 (dd, 1H, H-B), 4.39 (d, 1H, J₂₇,=13.5 Hz, H-2), 5.27 (d, 1H, H-2); ⁻C-n.m.r. (CDCl_2): 20.28, 20.66 (20Ac), 34.99 (C-7), 59.28 (C-6), 62.28 (C-5), 64.77 (CH,=Ac), 73.66 (C-4), 80.67⁻³(C-2), 170.49, 170.79 (2Ac), 172.41 (C-O); MS m/z: M: 273.0849(273.0849 for C ₁₁H₂MO₂). 12: 10%; m.p. 119-121°C; (a) -122.2° (c 1, CH,Cl_1); H-n.m.r. (CDCl_3): ¹2.09 (s, 3H, 0Ac), 3.47 (d, 1H, H-7), 4.81 (d, 1H, J₁₇, -13.84z, H-1), 5.26 (t, 1H, J₁₀, -9.1 Hz, H-10); ⁻C-n.m.r. (CDCl_2): 20.76 (Ac), 50.63, (C-4), 53.31 (C-5), 63.29 (CH,=Ac), 78.84, 80.96, 82.09 (C-1.10.9), 88.38 (C-7), 170.48 (Ac), 174.34 (C=0); MS m/z: M: 243.0729 (243.0729 for C, H₁NO). 11: 40%; syrup; (a) +27.4° (c 1, CH,Cl_1); i.r. (CH,Cl_2): 3460, 1750 cm⁻¹; H-n.m.r. (CDCl_3): 2.10, 2.13 (2s, 6H, 20Ac), 3.23 (dd, J₅₀,=10.0, J₁₀=6.3 Hz, H-9), 3.58 (dd, 1H, J₁₀=8.5 Hz, H-9), 3.69 (m, 1H, J₁₆=8.1 Hz, H-1), 4.22 (dd, 1H, J₄₅=7.5 Hz, H-4), 4.27 (dd, 1H, J₄₅=5.7 Hz, H-B), 4.45 (dd, 1H

(1R, 4S, 5R, 6S) 5-Acetoxy-4-acetoxymethy1-8-aza-3,7-dioxa-2-oxo-bicyclo(4.3.0)nonan (11). -To a solution of formaldoxime obtained according to the procedure described for 7, lactone $\underline{2}$ (3.4 g, 0.015 mol) was added. The mixture was heated at 70°C for 3 h. Subsequently the mixture was extracted with methylene chloride. The extract was dried evaporated and purified on a silica gel column to give 11 (85%).

ACKNOWLEDGMENTS

This work was supported by the Polish Academy of Sciences grant CPBP-01.13.2.15.

REFERENCES

- I. Panfil and M. Chmielewski, Tetrahedron, <u>41</u>, 4713 (1985).
 I. Panfil, M. Chmielewski, and C. Beľzecki, Heterocycles, <u>24</u>, 1609 (1986).
 I. Panfil, C. Beľzecki, and M. Chmielewski, J. Carbohydr. Chem., <u>6</u>, 463 (1987).
 J. Tufariello, G. E. Lee, P. A. Senaratne, and M. Al-Nuri, Tetrahedron Lett., 4359 (1979).
 M. Ochiai, M. Obayashi, and K. Morita, Tetrahedron, <u>23</u>, 2641 (1967).
 N. K. A. Dalgard, K. E. Larsen, and K. B. G. Torssell, Acta Chim. Scand. B, <u>38</u>, 423 (1984).
 M. Chmielewski and S. Maciejewski, Carbohydr. Res., <u>157</u>, C1 (1986).
 M. Chmielewski, J. Jurczak, and S. Maciejewski, ibid., <u>165</u>, 111 (1987).
 P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. German, J.-P. Declerq, and M. M. Woolfson, MULTAN 11/82, A system of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data, Department of Physics, University of York (Great Britain), 1982.