REACTION OF α , β -UNSATURATED SUGAR LACTONES WITH FORMALDOXIME

I. PANFIL^a, C. BEZZECKI^a, M. CHMIELEWSKI^{a*}, AND K. SUWIŃSKA^b

^aInstitute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, b_{Institute of Phisycal Chemistry, Polish Academy of Sciences, 01-224 Warszawa,} POLAND

(Received in UK 30 Augusf 1988)

Abstract - Unsaturated sugar 6-lactones react with a mixture of hydroxylamine and formaldehyde (formaldoxime) either *via* stepwise process to produce the
1-aza-3,9-dioxa-8-oxo-bicyclo(4.3.0)nonan derivative, or *via* 1,3-dipolar cycloaddition of the nitrone form affording the B-aza-3,7-dioxa-2-oxo-bicyclo- (4.3.0)nonan derivative.

In previous papers, we have reported that 1,3-dipolar cycloaddition of nitrones to α , β -unsaturated sugar lactones proceeded regiospecifically to afford a mixture of stereoisomers.^{1,2} The nitrone molecule approaches the lactone ring anti to the terminal acetoxymethyl group of the substrate, and exo addition is favoured over *endo* addition. Adducts having the isoxazolidine ring fused to the sugar unit have been used as precursors of enantiomerically pure trisubstituted azetidinones-2 (Scheme 1).³ The full sequence of reactions leading from the lactone to the β -lactam skeleton, which is based on a previously published approach, ⁴ have been successfully performed for the nitrones derived from anisaldehyde and N -phenylhydroxylamine.^{2,3}

Scheme 1

The present work directs attention to the simplest nitrone which is the tautomeric form of formaldoxime. It is known that, under certain conditions, formaldoxime can react directly with olefins in a 1,3-dipolar fashion to produce isoxazolidines.^{5,6} As dipolarophiles we selected racemic 6-acetoxymethyl-5,6-dihydropyron-2 (1) and 4,6-di-O-acetyl-2,3-dideoxy-D-threohex-2-enoaldono-1,5-lactone (2) .

RESULTS AND DISCUSSION

Formaldoxime was prepared in situ by the reaction of formaldehyde and hydroxylamine hydrochloride in the presence of sodium hydroxide in a methanol-water solution.⁵ Cycloadditions were performed according to two general procedures. The first one used a 5-fold excess of formaldoxime and the reaction mixture was storred at room temperature for 3 days. In the second, equimolar amounts of substrates were heated at 70° C for 3 h.

Using the first procedure, lactone $\underline{1}$ afforded stereospecifically the unexpected bicyclic adduct $\frac{7}{1}$ in 80% yield (Scheme 2). The structure of $\frac{7}{1}$ was proved unequivocally by X-ray crystallography (Fig. 1; see Experimental). It can be postulated that reaction proceeds via a two-step addition to $\frac{7}{1}$ (Scheme 2). The first step consists in an axial approach of hydroxylamine to the double bond of $\underline{1}$.to afford a Michael adduct $\underline{3}$. Subsequently the hydroxyl group of the hydroxylamine residue opens the six-membered lactone ring to produce isoxazolidinone 5 . This pathway corresponds well with that previously reported for the highly stereoselective and reversible addition of 0-benzylhydroxylamine to lactone 1, in which the nucleophile is added *anti* with respect to the equatorial acetoxymethyl group.⁷ Compound 5 adds a formaldehyde molecule producing a bicyclic system $\frac{7}{1}$.

Scheme 2

Hydroxylamine does not add to the double bond of the lactone $\underline{1}$ when the reaction mixture is heated because the equilibrium of Michael addition is entirely shifted to substrates. On the other hand, 1,3-dipolar cycloaddition of the nitrone tautomeric form of formaldoxime to lactone 1, which is slow at room temperature, begins to play a decisive role. The cycloadduct 9, however, reacts immediately with a second molucule of lactone $\underline{1}$ to produce a double adduct $\underline{10}$.

The alternative pathway for the formation of 10 should also be taken into consideration. This consists in formation of a nitrone from hydroxylamine 3 and formaldehyde at the first step of reaction. Subsequently, the nitrone affords 10 via 1,3-dipolar cycloaddition to lactone 1 (Scheme 3).

The structure of lo, which is a mixture of two diastereomeric racemates, was proved on the basis of analytical and spectral data. Owing to the slow inversion process at the isoxazolidine nitrogen atom, 3 <u>10</u> displays considerable line broadening in the 1 H-n.m.r. and 13 C-n.m.r. spectra ta \cdot ken at room temperature; at $100^{\sf o}{\rm C}$ in pyridine solution 10 shows well resolved $^{\sf l}{\rm H}$ -n.m.r. spectrum.

In contrast to 1, lactone 2 at room temperature produces compound 8 in 20% yield only, probably due to the syn interaction between the acetoxy substituent and the neighbouring five-membered isoxazolidine ring. In addition to $\underline{8}$, the 1,3-cycloadduct 11 (40%) and its rearranged derivative 12 (10%) are formed (Scheme 4). Two-step addition to lactone 2, at first hydroxylamine and subsequently formaldehyde, increased the content of 8 up to 45% .

Upon heating 2 with formaldoxime, 11 becomes the only product (85%). In contrast to 9 , 11 does not add the second molecule of 2 . Upon prolongation of heating, 11 undergoes lactone ring contraction followed by addition of formaldehyde to afford the tricyclic structure 12.

The structures of <u>11</u> and <u>12</u> were determined on the basis of their m.s., 1 H-n.m.r., and $\frac{13}{13}$ C-n.m.r. data. In addition, the structure of crystalline $\frac{12}{12}$ was proved by the X-ray crystallography, thus proving also the structure and configuration of the bicyclic precursor 11 (Fig. 2).

Scheme 5

The difference in reactivity between 1 and 2 is probably connected with the participation of the 4-acetoxy substituent which facilitates the retro Michael addition, causing shift if reversible reaction toward the 1:1 adduct 11 and its rearranged form 12 (Scheme 5).

Fig.1 Computer generated perspective drawing of (4S*, 6R*) 4-acetoxymethyl-1-aza-3,9-dioxa-8-5xo-
bicyclo(4.3.0)nonan (<u>7</u>).

Fig. 2 Computer generated perspective drawing of (lR, 4R, 9R, 10S) 9-acetoxymethyl-6-aza-2,8,11-
trioxa-3-oxo(4.3.2.0)undecan (12).

EXPERIMENTAL

⁺H and ¹³C-n.m.r. spectra were recorded for solutions in CDC1₃ on a Bruker AM-500 spectrometer
(TMS=0 ppm). I.r. spectra were recorded on a Unicam SP-200 spectrophotometer. Mass spectra were recorded with a Finigan Mat 8200 mass spectrometer. Tic was performed with Merck DC Alufolien Kieselgel 60F-254. Column chromatography was carried out with silica gel Merck (230-400 mesh). Mps are uncorrected.

Lactones 1 and 2 were obtained according to the procedure described earlier.⁸

Crystallography. - Compound 7 (C_oH₁₁NO₅) crystallized in monoclinic I2/a space group, a=15.257 (3), b=5.714(2), c=23.721(4) A, B=94.44(2)⁰⁹, and z=8. The structure was solved by direct method using MULTAN program tions of MO-Ka radiation.

Compound <u>12</u> (C₁₀H₁₃NO₆) crystallized in monoclinic P2₁ space group, a=5.558(2), b=8.119(4),
c=11.948(4) A,₀B=98.19(3)⁰⁶, and z=2. The structure was solved by direct methods using the MULTAN
program system an radiation.

 $\frac{(4S^*, 6R^*)$ 4-acetoxymethyl-1-aza-3,9-dioxa-8-oxo-bicyclo $(4,3.0)$ nonan (7). - To a solution of
hydroxylamine hydrochloride (1.0 g, 0.015 mol) and sodium hydroxide (0.58 g, 0.015 mol) in 30% aq.
methanol (3 ml) below 3 ture was left at room temperature for 3 days. Subsequently the mixture was extracted with methylene
chloride. The extract was dried and evaporated. The oily residue was purified on a silica gel colu-
m using hexame-ethyl H-5), 1.67 (dt, 1H, J_{c,},=J₅,₆=11.5 Hz, H-5'), 2711 (s, 3H, OAc), 2.48 (d, 1H, J_{J,7},16.5'Hz, H-7), 3.16 (dd, 1H, J_{c,7},=7.0'Hz, H-7'), 3.78 (m, 1H, H-4), 3.95 (m, 1H, H-6), 4.06 (dd, 1H, J_{c,1}=6.4, J_AB⁼
11.8 H

(lR*, 4S*, 6R*) 4-Acetoxymethyl-8-((6'S*, 3'R*) 6'-acetoxymethyltetrahydro-2H-pyronyl-4')-3,7- dioxa-2-oxo-bicyclo(4.3.0)nonan (lo). - To a solution of formaldoxime obtained according to the procedure described above, lactone <u>1</u> (2.6 g, 0.015 mol) was added at room temperature. The mixture was
heated at 70°C for 2 h and after cooling extracted with methylene chloride. The extract was dried and evaporated to give an oily substance. Chromatographical purification gave crystalline product
<u>10</u> (60%); m.p. 130-133°C; i.r. (CH₂Cl₂): 1750 cm⁻¹; ¹H-n.m.r. (pyridine-d₅; 100°C): 1.85-2.15 (m,
4H, H-5,5a,5' 4H, H-5,5a,5',5'a), 1.95 (s, 6H, 20AcJ, 2.76 (dd, 1H, J₃₁₄,=5.5, J₃₁₃₁,=16.8 Hz, H-3'), 2.83 (dd,
1H, J_{31a4},=5.2 Hz, H-3'a), 3.08(m, 1H, H-1), 3.22 (quintet, 1H, ∑J≡20.1 Hz, H-4'), 3.56 (t, 1H, ΣJ=1876—Ήz, H-9a), 3.70 (q, 1H, ΣJ=23.7 Hz, H-9b), 4.20-4.35 (m, 4H, 2CH₂OAc), 4.49 (quintet, 1H,
ΣJ=14.6 Hz, H-6), 4.89 (m, 2H, H-4,6'). MS m/z: M: 385, M-170, M-214. Anál. Calcd for C₁₇H₂₂NO_c: C, 52.98; H, 5.97; N, 3.63. Found: C, 52.8; H, 6.2; N, 3.5.

(4s. 5R, 65) 5-Acetoxy-4-acetoxymethyl-l-aza-3,9-dioxa-8-oxo-bicyclo/4.3.O)nonan (8), (1R. 4S, 5R, 6S) 5-acetoxy-4-acetoxymethy1-8-aza-3,7-dioxa-2-oxo-bicyclo(4,3.0)nonan (11), and (1R, 4R, 9R,
10S) 9-acetoxymethy1-6-aza-2,8,11-trioxa-3-oxotricyclo(4,3.2.0 * ")undecan (12). - To a solution of formaldoxime obtained according to the procedure described for 1, lactone 2 (0.68 g, 0.003 mol) was added at room temperature. The mixture was left at room temperature for 3 days. Subsequently the mixture was extracted with methylene chloride. The extract was dried and evaporated. The oily resi-
due was separated on a silica gel column using hexane-ethyl acetate 1:1 mixture as an eluant to
give three products and un 2.13 (2s, 6H, 20Ac), 3.23 (dd, J_{og},=10.0, J₁₉=6.3 Hž, H-9), 3.58 (dd, 1H, J₁₉,=8.5 Hz, H-9°), 3.69
(m, 1H, J₁₆=8.1 Hz, H-1), 4.22 (dd, 1H, J_{A,}=6.7, J_{Ap}=11.8 Hz, H-A), 4.27 (dd, 1H, J_{Ap}=5.7 Hz, H-B), (m, lH, J₁₆=8.1 Hz, H-1), 4.22 (đđ, lH, J₄₄≛6.7, J_{4B}=11.8 Hz, H-A), 4.27 (dà? lH, J_{4BI3}.7 Hz, H-B),
4.45 (dd, lH, J₅₆=3.1 Hz, H-6), 4.93 (dt, lH, J₄₅=1.5 Hz, H-4), 5.19 (dd, lH, H-5);^{4BI3}C-n.m.r. (CDC1₃): 20.60,~20.67 (2Ac), 45.44 (C-1), 57.06 (C-9), 61.86 (C-5), 65.2 (CH₂OAc), 73.70 (C-4),
75.22 (C-6), 168.40 (C=O), 169.24, 170.32 (2Ac); MS m/z: M. 273.0849 (273.0849 for C₁₁H₁₅NO₇).

(4S, 5R,6S) 5-Acetoxy-4-acetoxymethyl-l-aza-3,9-dioxa-8-oxo-bicyclo(4.3.0)nonan (8) and (lR, 45, 5R, 6S) 5-acetoxy-4-acetoxymethy1-8-aza-3,7-dioxa-2-oxo-bicyclo[4.3.0]nonan (11). - To a solution
of hydroxylamine hydrochloride (1.0 g, 0.015 mol) and sodium hydroxide (0.58 g, 0.015 mol) in 30%
aq. methanol (3 ml) l 25%).

 $\frac{(1R, 4S, 5R, 6S) 5 - \text{Acetoxy-4-acetoxymethyl-8-aza-3,7-dioxa-2-oxo-bicyc1o(4.3.0)nonan (11). -\n as solution of formalox time obtained according to the procedure described for I , lactone 2 (3.4 g, 0.015 mol) was added. The mixture was heated at 70°C for 3 h. Subsequently the mixture was extracted with methylene chloride. The extract was dried evaporated and purified on a silica gel column to$ give 11 (85%).

ACKNOWLEDGMENTS

This work was supported by the Polish Academy of Sciences grant CPBP-01.13.2.15.

REFERENCES

-
-
-
- 1, I. Panfil and M. Chmielewski, *Tetrahedron, 4*1, 4713 (1985).
2. I. Panfil, M. Chmielewski, and C. Belzecki, *Heterocycles, 2*4, 1609 (1986).
3. I. Panfil, C. Belzecki, and M. Chmielewski, J. *Carbohydr. Chem.*, <u>6</u>, 46
-
-
-
-
- 6. N. K. A. Dalgard, K. E. Larsen, and K. B. G. Torssell, Acta Chim. Scand. B. 38, 423 (1984).
7. M. Chmielewski and S. Maciejewski, Carbohydr. Res., 157, Cl (1986).
8. M. Chmielewski, J. Jurczak, and S. Maciejewski, ibid.